EXTREME: an online EM algorithm for motif discovery

نویسندگان

  • Daniel Quang
  • Xiaohui Xie
چکیده

MOTIVATION Identifying regulatory elements is a fundamental problem in the field of gene transcription. Motif discovery-the task of identifying the sequence preference of transcription factor proteins, which bind to these elements-is an important step in this challenge. MEME is a popular motif discovery algorithm. Unfortunately, MEME's running time scales poorly with the size of the dataset. Experiments such as ChIP-Seq and DNase-Seq are providing a rich amount of information on the binding preference of transcription factors. MEME cannot discover motifs in data from these experiments in a practical amount of time without a compromising strategy such as discarding a majority of the sequences. RESULTS We present EXTREME, a motif discovery algorithm designed to find DNA-binding motifs in ChIP-Seq and DNase-Seq data. Unlike MEME, which uses the expectation-maximization algorithm for motif discovery, EXTREME uses the online expectation-maximization algorithm to discover motifs. EXTREME can discover motifs in large datasets in a practical amount of time without discarding any sequences. Using EXTREME on ChIP-Seq and DNase-Seq data, we discover many motifs, including some novel and infrequent motifs that can only be discovered by using the entire dataset. Conservation analysis of one of these novel infrequent motifs confirms that it is evolutionarily conserved and possibly functional. AVAILABILITY AND IMPLEMENTATION All source code is available at the Github repository http://github.com/uci-cbcl/EXTREME.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an Efficient Hybrid Method for Motif Discovery in DNA Sequences

This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...

متن کامل

Stochastic EM-based TFBS motif discovery with MITSU

MOTIVATION The Expectation-Maximization (EM) algorithm has been successfully applied to the problem of transcription factor binding site (TFBS) motif discovery and underlies the most widely used motif discovery algorithms. In the wider field of probabilistic modelling, the stochastic EM (sEM) algorithm has been used to overcome some of the limitations of the EM algorithm; however, the applicati...

متن کامل

MEME Suite: tools for motif discovery and searching

The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning algorithms--MAST, FIMO and GLAM2SCAN--allow scannin...

متن کامل

DNA Motif Discovery Based on Ant Colony Optimization and Expectation Maximization

The identification of transcription factor binding sites (TFBSs) is important for understanding the genetic regulatory system, but weak conservation of TFBSs poses a challenge in computational biology. In this study, we propose a method based on the Ant Colony Optimization (ACO) and Expectation Maximization (EM) algorithm to discover DNA motifs (collections of TFBSs) in a set of bio-sequences. ...

متن کامل

The EM Algorithm and the Rise of Computational Biology

In the past decade computational biology has grown from a cottage industry with a handful of researchers to an attractive interdisciplinary field, catching the attention and imagination of many quantitatively-minded scientists. Of interest to us is the key role played by the EM algorithm during this transformation. We survey the use of the EM algorithm in a few important computational biology p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 30 12  شماره 

صفحات  -

تاریخ انتشار 2014